
A Research White Paper by TMurgent Technologies

JUNE 1, 2010 : APP-V 4.6 RTM

TIMOTHY MANGAN

Brought to you by:

Training and education resources for Microsoft App-V

About the Author
Tim Mangan, and his company TMurgent Technologies LLP, are dedicated to supporting enterprises,

consultants, resellers, integrators, and Independent Software Vendors, in their understanding of

Microsoft App-V. Tim originally ran the development group at Softricity, which was acquired by

Microsoft for the technology, when the platform was built. He is recognized by Microsoft as a “Most

Valuable Professional” (MVP) and by Citrix as a “Citrix Technology Professional” (CTP), and is well known

and sought-after speaker around the world. Tim is also co-author of the upcoming book on the App-V

Client, to be released in the Summer of 2010. TMurgent provides training and consulting to the App-V

community.

Abstract
Two important, but now well understood, features of Microsoft Application Virtualization (App-V) are

Dynamic Suite Composition (DSC) and transparency. This white paper documents research carried out

by TMurgent into how these features behave and integrate at a detail level. Specific operational aspects

are painstakingly documented here for the first time anywhere, revealing behaviors affecting virtualized

application behavior with DSC is in use.

In the conclusion section, new recommendations towards “best practices” are outlined for building App-

V sequences using DSC. Included in these recommendations are:

 All Application OSD files that will be used to launch applications for any DSC component should

contain all DSC references, and in the same order.

 Folders and Registry keys that exist in more than one DSC component should be screened to

ensure that the same transparency setting is used in each case .

Introduction
Dynamic Suite Composition, or DSC, is a new feature added to Microsoft Application Virtualization (App-

V), allowing for separate virtual application sequences to be dynamically bound together at runtime to

work as a single virtual application.

When this feature was released in App-V 4.5, Microsoft indicated that the initial version of DSC was for

limited use, and eventually an improved version was being planned. Release 4.6, which is the focus of

this research, contained no known significant changes affecting DSC. Microsoft depicts the support for

DSC as being appropriate for “simple” application integration. Examples include applications that

support dll “plug-ins” (such as many Microsoft Office applications or the Internet Explorer and other

http browsers), and those that reference each other by launching an executable.

To use DSC, separate sequences are created for each application, or application component. After

sequencing, the OSD files are modified to list dependent components. The App-V client then reads and

processes these dependencies when the application package is started.

For DSC to work, folders and registry keys are layered over each other, and the focus of this research is

first to understand how that layering occurs, and were runtime changes to these components are

stored. This layering is not new in the product; App-V has always used layering to create an integration

of package contents and user personalizations (stored in the PKG files) with the Client PCs resident

registry and file system. With DSC, however, this layering becomes more important to understand.

Inside a SFT package, a folder or registry key (keys are in essence the equivalent to a directory folder

inside the registry) has a setting that affects how this folder or key is layered. We refer to this as the

transparency setting, although in the sequencer it appears as two exclusive options called “Merge with

Local” and “Override Local”. Fortunately, without DSC, the sequencer automatically determines the

appropriate transparency setting when processing the monitored application in almost all cases.

For example, if a folder or key is created new while monitoring, the sequencer will set the transparency

to “Override”. This means that if the folder or key existed on the client PC, perhaps because an older

version of the same application is natively installed, the virtual application will not see artifacts of the

older version.

If files or folders, registry keys or name/value pairs are added to a parent folder or key, the sequencer

would set the transparency to “Merge”. This allows the virtual application to see additional standard

components under that parent that are part of the operating system and do not need to be included in

the package.

The client uses these transparency settings to create a layered view (sometimes called the “virtual

environment”) for the application. Below in an example showing the hypothetical contents of an SFT

and those resident on a client PC.

When layered, the resulting virtual environment view would appear as shown next:

Notice the difference in how the two resident client files, Name1b and Name2b, are treated in this view

due to the transparency setting of the parent sub-folders.

When modifications are made to package components while the virtual application is running, these

changes are generally saved in a separate PKG file1. When the application package is next opened, the

client creates the virtual environment by first layering the SFT over the resident client PC,

and then the PKG contents are layered on top of this. In essence, all folders

and keys of the PKG are set to a “merge” transparency setting, such that

only files and registry name/value pairs of the PKG are applied.

As viewed from above, these layers act like panes of glass that

contain smudges. Each file and registry name/value pair acts as an

opaque smudge, preventing any similarly named file or registry name in a

lower layer from being seen in the view. Folders and keys marked with a transparency

of “override” are similarly opaque, while those with a transparency of “merge” allow

visibility of sub-items in lower layers. But when DSC is considered two important, but unanswered (by

Microsoft documentation), questions are raised that need to be answered:

 How does the client perform layering when there are multiple SFTs and multiple PKGs?

 Once the virtual environment is created, to which PKG is a given change written to?

1
 Actually several PKG files exist for a virtual application. For simplicity in this paper, we will treat the collection of

PKG files associated with an SFT as a single PKG. The research did look at these as separate layers and concluded
that this simplification in our “description model”, does not misstate how the product works.

Resid
ent C

lie
nt

SFT
PKG

Testing Description
We devised a series of tests using a contrived set of packages to answer these two questions. The tests

were conducted using DSC consisting of a main package sft and two “plugin” sfts.

Each of these packages contain a set of folders and files, registry keys and name/value pairs. Every

possible combination of duplication and combination of transparency settings are created. Shown

below is an example of the registry in the main application package.

The naming convention of these keys is as follows:

 “AllKey” indicates that the key exists in all three packages. “M1Key” indicates that the key exists

in the main package and plugin1 but not plugin2. “M2” is main and plugin2. “MainOnlyKey”

indicates that the key is not created in the plugins. “12key”, which does not exist in the main

package would indicate the key exists in both plugin1 and plugin2.

 The last three characters are positional to indicate the transparency settings for the three

packages. The first character for the main package, second for plugin1, etc. “MMM” means

transparency is set to “merge” in each case. “OOM” means it is set to “Override” for the main

application and plugin1 but “merge” in plugin2. The “x” character appears in a position when

the key does not exist in that package.

 Under each of the keys, registry names appear using a similar naming for which packages have

that name.

Folders and files are similarly set up for each of the packages. The contents of these files (as well as the

contents of the registry strings) are unique for each package to aid in determining the source of the

resulting view.

Merge

Override

Finally, the test client is set up with a duplicate of all of these folders, files, registry keys, and

name/value pairs. An additional file, registry name/value is also created labeled “ClientOnly” under

each folder or key.

Each of the three packages are generated with an OSD application to the command prompt. From this

command prompt, either regedit or notepad may be run inside the virtual environment to allow us to

manipulate the visible

manipulate the contents of the visible files and registry items and create new ones.

The main package OSD is modified to add dependencies for both of the plug-ins, and all three packages

are deployed to the client test user.

Client testing is performed as follows:

1. Running the main package with plugins, determine what is visible and the source of the file or

registry item.

2. From that same view, modify each file and registry item that is visible. Also create a new

file/item under each folder/key. Determine to which package PKG file the result is stored

3. After resetting all three packages (returning them to the initial state):

a. Running only plugin2, perform all modifications to visible items.

b. Running only plugin1, perform all modifications to visible items.

c. Running the main application with plugins, perform all modifications.

d. Determine to which PKG file the result is stored.

Determination of which PKG the changes are stored was performed by using the PkgView tool (a free

tool that may be downloaded from the tools section of the TMurgent website).

Additional Testing Notes:
There are a few other details to note for completeness:

 All testing was performed using the 4.6 RTM release of App-V

 Files of a package stored in the “asset folder” (the folder created on the “Q:” drive) are not of

interest to this test. Anything written to the asset folder tree can never have a duplicate in

another package (because it must have a differently named asset folder) or on the client

(because the drive is virtual). This is why the sequencer does not have transparency settings on

the “Files” tab but only on the “Virtual Files System” tab.

 File/Folder, or Key/Item deletion was not tested. When running a virtual application, deletions

become markings of a deletion in the appropriate PKG. We assume (but did not test) that these

deletion markings act exactly as a modification would.

 In the case of files, we duplicated all files, making half as “User” and half as “Application” in the

Files tab of the sequencer. This proved to be of no consequence.

 Environment variables, Policies, Scripts, are examples of possibly items that cannot conflict in

the same way as folders, files, and registry items. These are contained in the OSD and are only

applied when the first application of a package is started.

It is also important to note that our testing found differences in the implementation of the Virtual File

System (VFS) and the Virtual Registry (VRG). It is because of these differences that we needed to

disclose the complete testing results, rather than just a summary and recommendations. We attribute

the differences due to different groups within the Microsoft App-V development team making

independent decisions

independent implementation decisions. It is like building a house with two contractors, one that

specializes in windows and another doors. If you ask them each to add a screen to their portals to keep

out bugs, both will add effective screens. However, the window contractor will probably add screens

that do not move (except to put up and take down) and the door contractor will probably add screens

that open or slide. As you might guess, one of those lets bugs in now and then!

But this paper isn’t about bugs, just differences that affect operation in different ways, leading us to

need to understand this behavior and develop practices to keep the differences from causing problems.

VFS Test Results
The results of the VFS testing are best understood if you have some information regarding how folders

and files properties are stored within the SFT and PKG. Unlike the VRG, all files and folders in the SFT

have a unique GUID. When a file or folder change is marked in the PKG, the PKG does not store the path

information, but only the name, GUID, and contents. The impact of this original design imposes a

constraint that changes marked in a PKG must be relative to the SFT for which the change was made to.

This is probably the behavior we all expected.

What we did not expect that was found in this testing, is how transparency is implemented, with

different behavior on transparency settings in the main pkg versus those of plug-ins. In short, we saw

more files than we expected to.

The VFS test results for Tests 1 and 2 are documented in the table that follows. The “Client” column

indicates if the referenced files existed resident on the client. “Which visible” column indicates which sft

the visible file came from (if visible). The “Modification to” column indicates which PKG the

modification was written to. Notice that in these results we had both “User” and “Application” marked

files causing the changes to be written to the User volume or Global volume, but in all cases to a PKG

associated with the SFT that was “visible”.

Folder File

Cli

ent Main PlugIn1 PlugIn2

Which

Visible Modification To

DscTestMMM ALL_VFS_Application yes Merge Merge Merge Plugin2 P2 Global_21_x_500

Folder File

Cli

ent Main PlugIn1 PlugIn2

Which

Visible Modification To

DscTestMMM ALL_VFS_User yes Merge Merge Merge Plugin2 P2 UserVol

DscTestMMM M1_VFS_Application yes Merge Merge Plugin1 P1 Global_21_x_500

DscTestMMM M1_VFS_User yes Merge Merge Plugin1 P1 UserVol

DscTestMMM M2_VFS_Application yes Merge Merge Plugin2 P2 Global_21_x_500

DscTestMMM M2_VFS_USER yes Merge Merge Plugin2 P2 UserVol

DscTestMMM 12_VFS_Application yes Merge Merge Plugin2 P2 Global_21_x_500

DscTestMMM 12_VFS_USER yes Merge Merge Plugin2 P2 UserVol

DscTestMMM MainOnly_VFS_Application yes Merge Main
Main
Global_21_x_500

DscTestMMM MainOnly_VFS_User yes Merge Main Main UserVol

DscTestMMM 1Only_VFS_Application yes Merge Plugin1 P1 Global_21_x_500

DscTestMMM 1Only_VFS_USER yes Merge Plugin1 P1 UserVol

DscTestMMM 2Only_VFS_Application yes Merge Plugin2 P2 Global_21_x_500

DscTestMMM 2Only_VFS_USER yes Merge Plugin2 P2 UserVol

DscTestMMM ClientOnly_VFS yes Client Client System

DscTestMMM Runtime once written Client System

DscTestMMO ALL_VFS_Application yes Merge Merge Override Plugin2 P2 Global_21_x_500

DscTestMMO ALL_VFS_User yes Merge Merge Override Plugin2 P2 UserVol

DscTestMMO M1_VFS_Application yes Merge Merge Plugin1 P1 Global_21_x_500

DscTestMMO M1_VFS_User yes Merge Merge Plugin1 P1 UserVol

DscTestMMO M2_VFS_Application yes Merge Override Plugin2 P2 Global_21_x_500

DscTestMMO M2_VFS_USER yes Merge Override Plugin2 P2 UserVol

DscTestMMO 12_VFS_Application yes Merge Override Plugin2 P2 Global_21_x_500

DscTestMMO 12_VFS_USER yes Merge Override Plugin2 P2 UserVol

DscTestMMO MainOnly_VFS_Application yes Merge

DscTestMMO MainOnly_VFS_User yes Merge

DscTestMMO 1Only_VFS_Application yes Merge Plugin1 P1 Global_21_x_500

DscTestMMO 1Only_VFS_USER yes Merge Plugin1 P1 UserVol

DscTestMMO 2Only_VFS_Application yes Override Plugin2 P2 Global_21_x_500

DscTestMMO 2Only_VFS_USER yes Override Plugin2 P2 UserVol

DscTestMMO ClientOnly_VFS yes

DscTestMMO Runtime once written P2 UserVol

DscTestMOM ALL_VFS_Application yes Merge Override Merge Plugin2 P2 Global_21_x_500

DscTestMOM ALL_VFS_User yes Merge Override Merge Plugin2 P2 UserVol

DscTestMOM M1_VFS_Application yes Merge Override Plugin1 P1 Global_21_x_500

DscTestMOM M1_VFS_User yes Merge Override Plugin1 P1 UserVol

DscTestMOM M2_VFS_Application yes Merge Merge Plugin2 P2 Global_21_x_500

DscTestMOM M2_VFS_USER yes Merge Merge Plugin2 P2 UserVol

DscTestMOM 12_VFS_Application yes Override Merge Plugin2 P2 Global_21_x_500

DscTestMOM 12_VFS_USER yes Override Merge Plugin2 P2 UserVol

Folder File

Cli

ent Main PlugIn1 PlugIn2

Which

Visible Modification To

DscTestMOM MainOnly_VFS_Application yes Merge

DscTestMOM MainOnly_VFS_User yes Merge

DscTestMOM 1Only_VFS_Application yes Override Plugin1 P1 Global_21_x_500

DscTestMOM 1Only_VFS_USER yes Override Plugin1 P1 UserVol

DscTestMOM 2Only_VFS_Application yes Merge Plugin2 P2 Global_21_x_500

DscTestMOM 2Only_VFS_USER yes Merge Plugin2 P2 UserVol

DscTestMOM ClientOnly_VFS yes

DscTestMOM Runtime once written P1 UserVol

DscTestMOO ALL_VFS_Application yes Merge Override Override Plugin2 P2 Global_21_x_500

DscTestMOO ALL_VFS_User yes Merge Override Override Plugin2 P2 UserVol

DscTestMOO M1_VFS_Application yes Merge Override Plugin1 P1 Global_21_x_500

DscTestMOO M1_VFS_User yes Merge Override Plugin1 P1 UserVol

DscTestMOO M2_VFS_Application yes Merge Override Plugin2 P2 Global_21_x_500

DscTestMOO M2_VFS_USER yes Merge Override Plugin2 P2 UserVol

DscTestMOO 12_VFS_Application yes Override Override Plugin2 P2 Global_21_x_500

DscTestMOO 12_VFS_USER yes Override Override Plugin2 P2 UserVol

DscTestMOO MainOnly_VFS_Application yes Merge

DscTestMOO MainOnly_VFS_User yes Merge

DscTestMOO 1Only_VFS_Application yes Override Plugin1 P1 Global_21_x_500

DscTestMOO 1Only_VFS_USER yes Override Plugin1 P1 UserVol

DscTestMOO 2Only_VFS_Application yes Override Plugin2 P2 Global_21_x_500

DscTestMOO 2Only_VFS_USER yes Override Plugin2 P2 UserVol

DscTestMOO ClientOnly_VFS yes

DscTestMOO Runtime once written P2 UserVol

DSCTestOMM ALL_VFS_Application yes Override Merge Merge Plugin2 P2 Global_21_x_500

DSCTestOMM ALL_VFS_User yes Override Merge Merge Plugin2 P2 UserVol

DSCTestOMM M1_VFS_Application yes Override Merge Plugin1 P1 Global_21_x_500

DSCTestOMM M1_VFS_User yes Override Merge Plugin1 P1 UserVol

DSCTestOMM M2_VFS_Application yes Override Merge Plugin2 P2 Global_21_x_500

DSCTestOMM M2_VFS_USER yes Override Merge Plugin2 P2 UserVol

DSCTestOMM 12_VFS_Application yes Merge Merge Plugin2 P2 Global_21_x_500

DSCTestOMM 12_VFS_USER yes Merge Merge Plugin2 P2 UserVol

DSCTestOMM MainOnly_VFS_Application yes Override Main
Main
Global_21_x_500

DSCTestOMM MainOnly_VFS_User yes Override Main Main UserVol

DSCTestOMM 1Only_VFS_Application yes Merge Plugin1 P1 Global_21_x_500

DSCTestOMM 1Only_VFS_USER yes Merge Plugin1 P1 UserVol

DSCTestOMM 2Only_VFS_Application yes Merge Plugin2 P2 Global_21_x_500

DSCTestOMM 2Only_VFS_USER yes Merge Plugin2 P2 UserVol

DSCTestOMM ClientOnly_VFS yes

Folder File

Cli

ent Main PlugIn1 PlugIn2

Which

Visible Modification To

DSCTestOMM Runtime once written Main UserVol

DSCTestOMO ALL_VFS_Application yes Override Merge Override Plugin2 P2 Global_21_x_500

DSCTestOMO ALL_VFS_User yes Override Merge Override Plugin2 P2 UserVol

DSCTestOMO M1_VFS_Application yes Override Merge Plugin1 P1 Global_21_x_500

DSCTestOMO M1_VFS_User yes Override Merge Plugin1 P1 UserVol

DSCTestOMO M2_VFS_Application yes Override Override Plugin2 P2 Global_21_x_500

DSCTestOMO M2_VFS_USER yes Override Override Plugin2 P2 UserVol

DSCTestOMO 12_VFS_Application yes Merge Override Plugin2 P2 Global_21_x_500

DSCTestOMO 12_VFS_USER yes Merge Override Plugin2 P2 UserVol

DSCTestOMO MainOnly_VFS_Application yes Override

DSCTestOMO MainOnly_VFS_User yes Override

DSCTestOMO 1Only_VFS_Application yes Merge Plugin1 P1 Global_21_x_500

DSCTestOMO 1Only_VFS_USER yes Merge Plugin1 P1 UserVol

DSCTestOMO 2Only_VFS_Application yes Override Plugin2 P2 Global_21_x_500

DSCTestOMO 2Only_VFS_USER yes Override Plugin2 P2 UserVol

DSCTestOMO ClientOnly_VFS yes

DSCTestOMO Runtime once written P2 UserVol

DSCTestOOM ALL_VFS_Application yes Override Override Merge Plugin2 P2 Global_21_x_500

DSCTestOOM ALL_VFS_User yes Override Override Merge Plugin2 P2 UserVol

DSCTestOOM M1_VFS_Application yes Override Override Plugin1 P1 Global_21_x_500

DSCTestOOM M1_VFS_User yes Override Override Plugin1 P1 UserVol

DSCTestOOM M2_VFS_Application yes Override Merge Plugin2 P2 Global_21_x_500

DSCTestOOM M2_VFS_USER yes Override Merge Plugin2 P2 UserVol

DSCTestOOM 12_VFS_Application yes Override Merge Plugin2 P2 Global_21_x_500

DSCTestOOM 12_VFS_USER yes Override Merge Plugin2 P2 UserVol

DSCTestOOM MainOnly_VFS_Application yes Override

DSCTestOOM MainOnly_VFS_User yes Override

DSCTestOOM 1Only_VFS_Application yes Override Plugin1 P1 Global_21_x_500

DSCTestOOM 1Only_VFS_USER yes Override Plugin1 P1 UserVol

DSCTestOOM 2Only_VFS_Application yes Merge Plugin2 P2 Global_21_x_500

DSCTestOOM 2Only_VFS_USER yes Merge Plugin2 P2 UserVol

DSCTestOOM ClientOnly_VFS yes

DSCTestOOM Runtime once written P1 UserVol

DSCTestOOO ALL_VFS_Application yes Override Override Override Plugin2 P2 Global_21_x_500

DSCTestOOO ALL_VFS_User yes Override Override Override Plugin2 P2 UserVol

DSCTestOOO M1_VFS_Application yes Override Override Plugin1 P1 Global_21_x_500

DSCTestOOO M1_VFS_User yes Override Override Plugin1 P1 UserVol

DSCTestOOO M2_VFS_Application yes Override Override Plugin2 P2 Global_21_x_500

DSCTestOOO M2_VFS_USER yes Override Override Plugin2 P2 UserVol

Folder File

Cli

ent Main PlugIn1 PlugIn2

Which

Visible Modification To

DSCTestOOO 12_VFS_Application yes Override Override Plugin2 P2 Global_21_x_500

DSCTestOOO 12_VFS_USER yes Override Override Plugin2 P2 UserVol

DSCTestOOO MainOnly_VFS_Application yes Override

DSCTestOOO MainOnly_VFS_User yes Override

DSCTestOOO 1Only_VFS_Application yes Override Plugin1 P1 Global_21_x_500

DSCTestOOO 1Only_VFS_USER yes Override Plugin1 P1 UserVol

DSCTestOOO 2Only_VFS_Application yes Override Plugin2 P2 Global_21_x_500

DSCTestOOO 2Only_VFS_USER yes Override Plugin2 P2 UserVol

DSCTestOOO ClientOnly_VFS yes

DSCTestOOO Runtime once written P2 UserVol

DscTest-
ClientOnly ClientOnly_VFS yes Client Client System

DscTest-
ClientOnly Runtime once written Client System

Looking at these results for visibility, we can clearly see that when the main application has a folder set

for “Override”, no client files in that folder may be seen. Similarly if either of the plugins have the folder

set for Override, the a file in that folder from either the client or main sft cannot be seen. But

surprisingly, an override setting to the folder on plugin2 does not hide a plugin1 file! Clearly the

software performing layering of plugins works differently than the layering of the main sft.

Performing Test 3 provided no unexpected insights, but confirmed our guess as the ordering of the

three SFTs and three PKGs. In essence, each SFT has it’s PKG layered just above it, and before the next

package layer.

VRG Test Results
Unlike the virtual file system, the VRG does not use GUIDs for items. Instead, each item is stored (both

in the SFT and the PKG) with a full “path” reference. Although this does should not prevent an

implementation design resulting in parallel results to those seen for the VFS, we found strikingly

different results.

Key RegName

Cli

ent Main PlugIn1 PlugIn2

Which

Visible

Modification

To

DscTestMMM ALL_String Y Merge Merge Merge 2 m

DscTestMMM M1_String Y Merge Merge 1 m

DscTestMMM M2_String Y Merge Merge 2 m

DscTestMMM 12_String Y Merge Merge 2 m

DscTestMMM MainOnly_String Y Merge m m

DscTestMMM 1Only_String Y Merge 1 m

DscTestMMM 2Only_String Y Merge 2 m

DscTestMMM Runtime once written m

DscTestMMO ALL_String Y Merge Merge Override 2 m

DscTestMMO M1_String Y Merge Merge m

DscTestMMO M2_String Y Merge Override 2 m

DscTestMMO 12_String Y Merge Override 2 m

DscTestMMO MainOnly_String Y Merge m

DscTestMMO 1Only_String Y Merge

DscTestMMO 2Only_String Y Override 2 m

DscTestMMO Runtime once written m

DscTestMOM ALL_String Y Merge Override Merge 2 m

DscTestMOM M1_String Y Merge Override 1 m

DscTestMOM M2_String Y Merge Merge 2 m

DscTestMOM 12_String Y Override Merge 2 m

DscTestMOM MainOnly_String Y Merge m m

DscTestMOM 1Only_String Y Override 1 m

DscTestMOM 2Only_String Y Merge 2 m

DscTestMOM Runtime once written m

DscTestMOO ALL_String Y Merge Override Override 2 m

DscTestMOO M1_String Y Merge Override m

DscTestMOO M2_String Y Merge Override 2 m

DscTestMOO 12_String Y Override Override 2 m

DscTestMOO MainOnly_String Y Merge m

DscTestMOO 1Only_String Y Override

DscTestMOO 2Only_String Y Override 2 m

DscTestMOO Runtime once written m

DSCTestOMM ALL_String Y Override Merge Merge 2 m

Key RegName

Cli

ent Main PlugIn1 PlugIn2

Which

Visible

Modification

To

DSCTestOMM M1_String Y Override Merge 1 m

DSCTestOMM M2_String Y Override Merge 2 m

DSCTestOMM 12_String Y Merge Merge 2 m

DSCTestOMM MainOnly_String Y Override m m

DSCTestOMM 1Only_String Y Merge 1 m

DSCTestOMM 2Only_String Y Merge 2 m

DSCTestOMM Runtime once written m

DSCTestOMO ALL_String Y Override Merge Override 2 m

DSCTestOMO M1_String Y Override Merge m

DSCTestOMO M2_String Y Override Override 2 m

DSCTestOMO 12_String Y Merge Override 2 m

DSCTestOMO MainOnly_String Y Override m

DSCTestOMO 1Only_String Y Merge

DSCTestOMO 2Only_String Y Override 2 m

DSCTestOMO Runtime once written m

DSCTestOOM ALL_String Y Override Override Merge 2 m

DSCTestOOM M1_String Y Override Override 1 m

DSCTestOOM M2_String Y Override Merge 2 m

DSCTestOOM 12_String Y Override Merge 2 m

DSCTestOOM MainOnly_String Y Override m m

DSCTestOOM 1Only_String Y Override 1 m

DSCTestOOM 2Only_String Y Merge 2 m

DSCTestOOM Runtime once written m

DSCTestOOO ALL_String Y Override Override Override 2 m

DSCTestOOO M1_String Y Override Override m

DSCTestOOO M2_String Y Override Override 2 m

DSCTestOOO 12_String Y Override Override 2 m

DSCTestOOO MainOnly_String Y Override m

DSCTestOOO 1Only_String Y Override

DSCTestOOO 2Only_String Y Override 2 m

DSCTestOOO Runtime once written m

DSCTestMMx M1_String Y Merge Merge 1 m

DSCTestMMx MainOnly_String Y Merge m m

DSCTestMMx 1Only_String Y Merge 1 m

DSCTestMMx Runtime Y once written m

DSCTestMxM M2_String Y Merge Merge 2 m

DSCTestMxM MainOnly_String Y Merge m m

DSCTestMxM 2Only_String Y Merge 2 m

DSCTestMxM Runtime once written m

Key RegName

Cli

ent Main PlugIn1 PlugIn2

Which

Visible

Modification

To

DSCTestMxx MainOnly_String Y Merge m m

DSCTestMxx Runtime Y once written m

DSCTestxMx 1Only_String Y Merge m

DSCTestxMx Runtime Y once written m

DSCTestxxM 2Only_String Y Merge m

DSCTestxxM Runtime once written m

Looking at the visibility results of test 1, we see that each layer, including the individual plugins, are

applied separately and with respect to their individual transparency setting. (Compare the MMO result

for “M1” name of this table to that of the MMO/M1 file of the VFS results).

In test 2, we see that all changes are written to the PKG associated with the main SFT, no matter what

the source.

Furthermore, in test 3 we see that even if additional registry settings exist for plugin associated PKGs,

these are ignored.

Summary of Test Results
Consider the differences in behavior of the VFS and VGR.

Test 1, where we looked at visibility of SFT contents:

Test 2, were we looked at where changes are saved:

Test 3, where we look at the effect of each SFT having an SFT:

The differences highlighted in these three tests have implications to using DSC.

The first test highlight the need to ensure that transparency settings for duplicated folders are

consistent between SFTs.

For applications that have simple integrations, we believe that the differences shown for tests 2 and 3

are not of consequence. In practice, these plugins (or referenced applications) do not generally

duplicate file or registry names, but augment each other. These differences, however, may cause more

complicated integrations to have inconsistent runtime behavior if the user ever runs a plugin without

the other applications. If the user runs the plugin separately and makes both file and registry changes,

and later runs the main application with the plugin, only the file changes would be seen. This could lead

to erratic, unpredictable, and seemingly random application behavior.

Recommendations
• Due to differences in how VRG/VFS behave in saving modifications, DFS involving significant

Registry Key AND File Folder overlaps should always be run with same ordering. This may mean

that “plugin” OSDs need to be significantly modified to have the “IMPLEMENATION” block

copied from the modified main application OSD, with the FILENAME changed to that of the

original plugin IMPLEMENTATION.

• If DFS “has issues”, check to ensure transparency settings are consistent for any given folder.

• Be aware that a VFS override in second or subsequent plugin for folder to hide an earlier plugin

is abnormal behavior.

